# Atmospheric Radiative Transfer: UMBC models Monochromatic and Fast Models Clear sky Cloudy sky Non-LTE

# Sergio De Souza-Machado

Atmospheric Spectroscopy Laboratory

L. Larrabee Strow (P.I.), Scott Hannon, Howard Motteler



Department of Physics University of Maryland Baltimore County Baltimore, MD 21250

# Overview

- Clear sky radiative transfer
- Fast Models
- Particle scattering
- Cloudy sky radiative transfer
- Non Local Thermodynamic Equilibrium

# Brightness Temperature vs Wavenumber



#### Radiative Transfer

• At steady state, the 1D Schwartzchild Equation says

$$\mu \frac{dI(v,\theta)}{k_e dz} = -I(v,\theta) + J(v)$$

- $\mu = cos(\theta)$ , dz is the vertical coordinate
- $k_e$  is the total extinction (due to gases, clouds etc)
- $k_e dz = ds$  is the optical depth
- $I(\nu, \theta)$  is the radiance intensity
- *J* is the source function

• If J = 0, then simple solution shows attenuation as beam propagates

$$I(\nu,\theta)(z) = I_0(\nu,\theta)e^{-(k_e z/\mu)}$$

## Source function J

- Clear Sky, in LTE : J = B(v, T)
- Clear Sky, in NLTE : J = rB(v, T) r COMPLICATED
- Cloudy Sky, in LTE:

$$\mu \frac{dI(v)}{k_e dz} = -I(v) + B(v, T)(1 - \omega_0) + \frac{\omega_0}{2} \int_{-1}^{+1} I(v, k_e, \mu') P(\mu, \mu') d(\mu') + \frac{\omega_0}{4\pi} \pi I_{sun} P(\mu, -\mu_{sun}) e^{-k_e z/\mu_{sun}}$$

- $\omega_0 = k_s/k_e = 1 k_a/k_e$  is the single scattering albedo (0 for no scatter)
- $P(\mu, \mu')$  is probability of scattering from  $\mu'$  into  $\mu$
- $P(\mu, -\mu_{sun})$  is probability of scattering from  $\mu_{sun}$  into  $\mu$

#### Solution of Radiative Transfer Equation I: Clear Sky

• For Clear Sky, one layer only, the equation to be solved is

$$\mu \frac{dI(\nu, \theta)}{k_{e}dz} = -I(\nu, \theta) + B(\nu)$$

• the solution is

$$I(\nu, \tau_e) = I(\nu, 0)e^{-s_e/\mu} + B(\nu, T)(1 - e^{-s_e/\mu})$$

- I(v,0) is the incident radiation at bottom of layer
- B(v, T) is the Planck radiance for the layer, at temperature T
- $s_e$  is the total optical depth of the layer =  $k_e Z$
- $\lim \tau_e \ll 1$  means  $I(\nu, \tau_e) \to I(\nu, 0)$  Surface Temperature
- $\lim \tau_e \gg 1$  means  $I(\nu, \tau_e) \rightarrow B(\nu, T)$  Layer Temperature

## Solution of Radiative transfer Equation I: Clear Sky (contd)

• For Clear Sky, one layer only

$$I(\nu, \tau_e) = I(\nu, 0)e^{-s_e/\mu} + B(\nu, T)(1 - e^{-s_e/\mu})$$

• Can iterate this for many layers (build up atmosphere)

$$I(v) = \epsilon_{s}B(v, T_{s})\tau_{s\to\infty}(v, \theta) + \sum_{i=1}^{i=N} B(v, T_{i})(\tau_{i+1\to\infty}(v, \theta) - \tau_{i\to\infty}(v, \theta)) + I_{refl.thermal} + I_{solarbeam}$$

- $\epsilon_s$ ,  $T_s$  are the surface terms
- $T_i$  are the i = 1, N layer temperatures
- Solution is in many codes, such as KCARTA
- Quite fast code!!!!
- Accuracy tested by instrument campaigns (CAMEX, WINTEX) and AIRS

#### LBL Models and Instrument Retrievals

- kCARTA takes about 6 minutes to run for ONE radiance set
- Other LBL codes take about 1 hour to run
- New instruments eg AIRS have 2378 channels, 90 observations in 3 sec
- To do retrievals, we need a code that takes about 1 sec to run
- Instruments see the convolved monochromatic radiances  $I_j(instr) = \int SRF_j(v)I(v)dv$

#### Fast Models - high resolution instruments eg AIRS

AIRS is a high resolution instrument with narrow spectral channels. The upwelling monochromatic radiance (here  $\tau$  is layer-space transmittance)

$$I(v) = \epsilon_S B(v, T_S) \tau_S + \sum_{i=1}^{i=N} B(v, T_i) (\tau_{i+1} - \tau_i)$$

needs to be convolved over the spectral channels.

$$I_{j} = \int d\nu SRF(\nu)\epsilon_{s}B(\nu,T_{s})\tau_{s} + \sum_{i=1}^{i=N} \int d\nu SRF(\nu)B(\nu,T_{i})(\tau_{i+1}-\tau_{i})$$

Planck term and emissivity do not vary appreciably over the channel width and so can be taken out of the integral!

$$I_{j} = \epsilon_{s}B(v, T_{s}) \int dv SRF(v) \tau_{s} + \sum_{i=1}^{i=N} B(v, T_{i}) \int dv SRF(v) (\tau_{i+1} - \tau_{i})$$

$$I_j = \epsilon_s B(v, T_s) \mathcal{T}_S + \sum_{i=1}^{i=N} B(v, T_i) (\mathcal{T}_{i+1} - \mathcal{T}_i)$$

SARTA replaces convolved monochromatic radiances with radiances generated from convolved transmittances

$$\mathcal{T}_i = \int d\nu SRF(\nu) \tau_i(\nu)$$

#### Fast Models - low resolution instruments eg MODIS

MODIS has wider spectral channels.

The upwelling monochromatic radiance (here  $\tau$  is layer-space transmittance)

$$I(v) = \epsilon_S B(v, T_S) \tau_S + \sum_{i=1}^{i=N} B(v, T_i) (\tau_{i+1} - \tau_i)$$

needs to be convolved over the spectral channels.

$$I_{j} = \int d\nu SRF(\nu)\epsilon_{s}B(\nu,T_{s})\tau_{s} + \sum_{i=1}^{i=N} \int d\nu SRF(\nu)B(\nu,T_{i})(\tau_{i+1}-\tau_{i})$$

Planck term and emissivity vary appreciably over the channel width and so need to be treated more carefully!

Looking at one of the terms in the summation,

$$I_i(modis) = \int SRF(v)B(v,T_i)(\tau_{i-1}-\tau i)dv$$

if we assume

$$I_i(modis) = (\mathcal{T}_{i+1} - \mathcal{T}_i)B(v_{eff}, T_i)$$

we can find an effective planck frequency for each layer by solving for

$$B(v_{eff}, T_i) = \frac{I_i(modis)}{(\mathcal{T}_{i+1} - \mathcal{T}_i)}$$

#### Convolved transmittances

- Convolved transmittances modelled using a regression based approach
- Generate training set of convolved transmittances using (48) regression profiles, using kCARTA
- Solve for the coefficients that relate [convolved layer transmittance] with [profile based predictors], for each component gas and layer.

$$\mathcal{A}X = B$$

where  $A = (m \times n)$  predictor matrix,  $X = (n \times 1)$  coefficients,  $B = (m \times 1)$  transmitance

# Convolved transmittances (contd)

- Monochromatically, for g=1 to G gases the total transmittance is the product of the individual transmittances  $\tau_{g1}\tau_{g2}\tau_{g3}...\tau_{gG}$
- This is not true after convolution!

$$\int dv SRF(v) \tau_{g1}(v) \tau_{g2}(v) \neq \int dv SRF(v) \tau_{g1}(v) \times \int dv SRF(v) \tau_{g2}(v)$$

- But we can ratio convolved transmittances!!!! Let  $\int dv SRF(v) \tau_{g1}(v) \tau_{g2}(v) = \mathcal{T}_{12} \text{ and } \int dv SRF(v) \tau_{g1}(v) = \mathcal{T}_{1}$ then the effective transmittance of gas 2 is  $\mathcal{T}_{2eff} = \frac{\mathcal{T}_{12}}{\mathcal{T}_{1}}$
- "Break out" 5 gases (H2O,CO2,O3,CH4,CO), while other gases are kept "fixed" or constant (transmittance depends only on layer temperature)
- The variable gases are treated differently eg CO2 does not vary a lot, while water vapor varies by orders of magnitude.

#### General Comments

- Our models use P/R linemixing for CO2 (temperature sounding)
- Can also tweak the water vapor continuum
- Scott looked at thousnds of clear sky spectra to put in overall tweaks
- They certainly do not make expt data agree "less" with LBL codes
- Hidden complexities such as : reflected thermal, modelling solar contributions

# Scattering particles in Atmosphere: Refractive Index



#### Scattering matter in atmosphere

#### Size considerations

- Typical infrared wavelengths  $\lambda$ : 3 15 um
- Typical dust particles  $\langle r \rangle \simeq 1-2$  microns in radius
- Typical cirrus particles are larger ( $< r> \simeq 10 \text{s}$  of microns or more)
- If  $\lambda \simeq < r >$  need to worry about scattering
- Mie scattering is easiest (spheres)
- Need to know  $\mathfrak{R}$ ,  $\mathfrak{I}$  parts of the refractive index

Look for far field solution  $(d \gg r)$ , and obtain

- absorption optical depth  $\tau_a$
- scattering optical depth  $\tau_s$
- extinction optical depth  $\tau_e = \tau_a + \tau_s$
- phase function  $P(\theta)$  (prob of scattering into angle  $\theta$ )
- asymmetry factor  $g = \int P(\theta) \cos\theta d\theta$

# Scattering matter in atmosphere (contd)

- Standard codes exist for Mie scattering
- Average the above parameters over the distribution function
- Lognormal distributions, gamma distributions, realistic cirrus particle distributions etc
- Codes for NONSPHERICAL particles are complex. Anthony Baran of UKMO gave us parameters for ice aggregates, and hexagonal plates.

#### Solution of Radiative transfer Equation II: Cloudy Sky

- For Cloudy Sky, solution is much more complicated!
- AIRS is infrared instrument (solar does not kick in till SW)
- In the thermal window region (800-1200 cm-1 or 8-12 microns),  $\tau_s \ll \tau_a$  can use absorptive code!!!!!
- In the SW window region (2400-2700 cm-1 or 3 microns), Worry about scattering, solar beam  $(\tau_s \simeq \tau_a)$
- Solution by specialised codes, such as DISORT,RTSPEC
- Depending on complexity of solution, code can be quite slow!
- Concentrating on thermal IR, we wrote a kTWOSTREAM code which is fast, and compares excellently against DISORT, RTSPEC
- Get reflection R, transmission T, layer emission E and solar beam B coefficients for one layer; add together coeffs for many layers.

#### kTwoStream code

• Integrodifferential equation

$$\mu \frac{dI(v)}{k_e dz} = -I(v) + B(v, T)(1 - \omega_0) + \frac{\omega_0}{2} \int_{-1}^{+1} I(v, k_e, \mu') P(\mu, \mu') d(\mu') + \frac{\omega_0}{4\pi} \pi I_{sun} P(\mu, -\mu_{sun}) e^{-k_e z/\mu_{sun}}$$

- Find the solution at N quadrature points; DISORT uses arbitrary number of streams; RTSPEC and TWOSTREAM use two (Gaussian) quadrature points, at  $cos(\theta_{\pm}) = \pm 1/\sqrt{3}$
- having solutions for the two stream angles, we can get the solution at arbitrary angle, by integrating RTE

# Cirrus Spectral Signature



# MODIS Image of Plume Mt Etna eruption



#### Aerosol Plume



SSM, UMBC

## $SO_2$ Plume



# MODIS image for October 19, 2002 over E. Mediterranean



SSM, UMBC 25

Using AIRS to detect dust : 960 - 1216 cm-1 BT diffs



# Optical Depth retrieval



SSM, UMBC

#### Solution of Radiative transfer Equation III: NLTE Sky

- Collisions tend to equilibriate temperatures
- Solar heating can preferentially pump some vibrational modes of certain gases, raising their temperature
- At high altitudes, very few molecules, so fewer collisions
- This means that some gases can be in Non Local Thermodynamic Equilibrium (NLTE) in the upper atmosphere
- The radiative transfer equation to be solved is now

$$\mu \frac{dI(\nu, \theta)}{k_{nlte}dz} = -I(\nu, \theta) + \beta B(T, \nu)$$

• need to compute  $\beta$ ,  $k_{nlte}$ 

## Computing the optical depths

- $T_l = \text{local thermodynamic temperature of layer } l$ ,
- $T_{vib}^{g,l}(i) = \text{NLTE}$  vibrational temperature of the ith band, gas g at the same layer l.
- Vibrational band center denoted by  $v_0$
- $k^{g,l}(i, \nu_0)$  is the LTE absorption coefficient,  $q^{g,l}$  is the gas amount in the layer

at NLTE the optical depth is related to the LTE optical depth by

$$k_{nlte}^{g,l}(i, \nu_0)q^{g,l} = k^{g,l}(i, \nu_0)\alpha^{g,l}(i, \nu_0)q^{g,l}$$

- $\alpha^{g,l}(i,\nu_0)$  is an adjustment factor
- As  $T_{vib}^{g,l}(i) \to T_l$ ,  $\alpha \to 1$

## Computing the Planck modifier

- $T_l = \text{local thermodynamic temperature of layer } l$ ,
- $T_{vib}^{g,l}(i) = \text{NLTE}$  vibrational temperature of the ith band, gas g at the same layer l.
- Vibrational band center denoted by  $\nu_0$
- $k^{g,l}(i, \nu_0)$  is the LTE absorption coefficient,  $q^{g,l}$  is the gas amount in the layer

at NLTE the Planck function is related to the LTE planck function by

$$B_{nlte}^{T,T(g,l)} = B(T)\beta^{g,l}(i,\nu_0)$$

- $\beta^{g,l}(i, \nu_0)$  is an adjustment factor
- As  $T_{vib}^{g,l}(i) \to T_l, \beta \to 1$

# Effect on Non-LTE on Sounding Channels

NLTE affects some upper atmosphere AIRS channels that have been designated for temperature sounding



SSM, UMBC 31

## Bands used for NLTE model



- 10 strong bands (red) weighted towards  $2380~\mathrm{cm^{-1}}$  region
- $\bullet~9~\mathrm{more~strong~bands~(magenta)}$  weighted towards 2200-2340  $\mathrm{cm^{-1}~region}$
- Weaker bands (blue) use LTE

# NLTE temperatures for tropical profile (sun=0)



- Current SARTA LTE model based on kCARTA, upto 5e-3 mb
- Current SARTA NLTE model based on kCARTA, upto 3e-5 mb
- $\bullet$  ECMWF profiles end at 0.1 mb

# Dependance on solar angle (TRP profile, $\Sigma - \Sigma$ band)



- Current SARTA LTE model based on kCARTA, upto 5e-3 mb
- Current SARTA NLTE model based on kCARTA, upto 3e-5 mb
- ECMWF profiles end at 0.1 mb

# Dependance on climatology





- TRP, MLS, MLW, SAS, SAW used in plots
- Dashed lines are the kinetic (LTE) temperatures
- Solid lines are the NLTE temperatures for the  $\Sigma-\Sigma$  band

# CO2PPMV : Dependance on climatology



- TRP, MLS, MLW, SAS, SAW, STD used in plots
- STD "splits" the differences

SSM, UMBC

## kCARTA 0-120 km results: bias and std



- Arbitrarily selecting day and night profiles from July 25, 2004
- Using orig 10 NLTE bands (large errors in 2200-2340 cm-1)
- About 750 profiles used (kCARTA takes LONG to run!!!)

## kCARTA 0-120 km results : bias and std



- Arbitrarily selecting day and night profiles from July 25, 2004
- Using the 19 NLTE bands (small errors in 2200-2340 cm-1)
- About 750 profiles used (kCARTA takes even LONGER to run!!!)

#### NLTE in SARTA

- Upwelling LTE radiance  $I_j(lte) = \int SRF_j(v)I_{lte}(v)dv$
- Upwelling NLTE radiance  $I_j(nlte) = \int SRF_j(v)I_{nlte}(v)dv$
- Already have SARTA for  $I_j(lte)$
- Using kCARTA model  $\delta I_j = I_j(nlte) I_j(lte)$
- Use the predictor-coeff idea :  $AX = \delta I_j$
- Predictors include (a) constant, (b) suncos, (c) suncos<sup>2</sup>, (d) suncos  $\times Tavtop_5$  (e) suncos at surface

SARTA 0-120 km results : R branchhead



- use the uniform clear profile set (34000 day, 10500 night)
- NLTE biases using OPTIMUM profiles above 0.1 mb

## SARTA 0-120 km results : R branchhead



- use the uniform clear profile set (34000 day, 10500 night)
- $\bullet\,$  NLTE stddev using OPTIMUM profiles above 0.1 mb

## SARTA 0-120 km results : solzen dependance



- (a) (b) refer to  $2380,2385 \text{ cm}^{-1}$ ; blue = LTE model, red = NLTE model
- use the uniform clear profile set (34000 day, 10500 night)
- NLTE biases using OPTIMUM profiles above 0.1 mb

## Work supported by NASA



http://earthobservatory.nasa.gov/

http://www-airs.jpl.nasa.gov/

http://asl.umbc.edu/

sergio@umbc.edu

# kTwoStream code (contd)

$$\mu_{+} \frac{dI^{+}}{d\tau} = -I^{+} + \frac{\omega_{0}}{2} (I^{+} (1 + 3g\mu_{+}\mu_{+}) + I^{-} (1 - 3g\mu_{+}\mu_{+})) + B_{b} (1 - \omega_{0}) e^{\beta \tau} + \frac{\omega_{0}}{4} S_{T} e^{-(T - \tau)/\mu_{sun}} P(\mu_{+}, -\mu_{sun})$$

$$-\mu_{+} \frac{dI^{-}}{d\tau} = -I^{-} + \frac{\omega_{0}}{2} (I^{+} (1 - 3g\mu_{+}\mu_{+}) + I^{-} (1 + 3g\mu_{+}\mu_{+})) + B_{b} (1 - \omega_{0}) e^{\beta \tau} + \frac{\omega_{0}}{4} S_{T} e^{-(T - \tau)/\mu_{sun}} P(-\mu_{+}, -\mu_{sun})$$

#### where we define

 $\mu_{+}$  upgoing stream angle = +1/sqrt(3)

 $\mu_{-}$  downgoing stream angle =  $-\mu_{+}$ 

 $I^+$  upgoing stream intensity

 $I^-$  downgoing stream intensity

au optical depth

T layer total optical depth (0 at bottom, T at top)

 $\omega_0$  layer single scattering albedo

g layer asymmetry factor

 $B_b$  radiance at bottom of layer

 $S_T$  solar radiance at top of layer

$$\left( egin{array}{c} I^+ \ I^- \end{array} 
ight) = \left( egin{array}{c} R & T^* \ T & R^* \end{array} 
ight) \left( egin{array}{c} I_t^- \ I_b^+ \end{array} 
ight) + \left( egin{array}{c} E^{up} \ E^{down} \end{array} 
ight) + \left( egin{array}{c} F^{up} \ F^{down} \end{array} 
ight)$$

where

$$I^+$$
 upgoing stream intensity at top of layer

$$I^-$$
 downgoing stream intensity at bot of layer

$$k_{\pm}$$
  $\pm 1/\mu_{+}\sqrt{(1-\omega_{0})(1-\omega_{0}g)}$ 

$$b \qquad \frac{1-g}{2}$$

$$\alpha$$
  $\omega_0(1-b)-1$ 

$$a_{\pm}$$
  $-(k_{\pm} + \alpha/\mu_{+})\mu_{+}/(\omega_{0}b)$ 

$$\Delta_0$$
  $-\alpha^2 + (\omega_0 b)^2$ 

$$R \qquad \qquad (e^{k_-T} - e^{k_+T})/\Delta_0$$

$$T \qquad (a_+ - a_-)/\Delta_0$$

$$R^*$$
  $R$ 

$$T^*$$

$$E^{down}$$
  $-R$ 

$$F^{up}$$
  $-R$ 

$$F^{down}$$
  $1 - T^*$ 

General solution (for  $\mu \geq 0$ )

$$\mu \frac{dI}{dk} = -I + J'(k, I^+(k), I^-(k))$$

where  $J'(k, I^+(k), I^-(k))$  is the (Eddington's second solution) source function

$$J'(k, I^{+}(k), I^{-}(k)) = \frac{\omega_{0}}{2} \left( (I^{+} + I^{-}) + 3g\mu\mu_{+}(I^{+} - I^{-}) \right)$$

$$B_{b}(1 - \omega_{0})e^{\beta k} + \frac{\omega_{0}}{4}S_{T}e^{-(T-k)/\mu_{sun}}P(\mu, -\mu_{sun})$$

Since we already know the solutions to the two stream radiances  $I^+, I^-$ , this general equation can be exactly solved as well. The solution can be written as

$$I(k,\mu) = \left(I(0,\mu) + S_{up}(k)\right)e^{-k/\mu}$$

## Two temperatures!!!

- Sun at 6000K visible wavelengths 400 800 nm (0.5 um)
- Earth at 300K infrared wavelengths 3 15 um
- $l(um) = 10000/v(cm^{-1})$
- Assume radiance = Planck black body = B(v, T)

$$B(v,T) = \frac{2hc^2v^3}{exp(hcv/K_BT) - 1}$$

$$Units: mWcm^{-2}sr^{-1}/cm^{-1}$$

• Radiance Units  $\leftrightarrow$  Temperature